Price, Productivity and Wage Dispersion in German Manufacturing
 (Firm Dynamics with Frictional Product and Labor Markets)

Leo Kaas Bihemo Kimasa

University of Konstanz
AFiD-Nutzerkonferenz
29. März 2017

Motivation

- Firm heterogeneity matters for the labor market and for the macroeconomy (e.g. hires, separations, wages, productivity).
- Macro literature considers shocks to revenue productivity to account for firm dynamics
- But supply and demand affect firms differently.
- Foster, Haltiwanger and Syverson (2008, 2016):
- Demand is important for firm growth and firm survival.
- Price dispersion: younger firms are more demand constrained and charge lower prices.

Research question

Examine the respective roles of demand and productivity for

1. Firm-level dynamics of prices, output, employment and wages
2. Aggregate dynamics

Contribution

- Develop an equilibrium model of firm dynamics with
- product and labor market frictions
- costly recruitment and sales
- wage and price dispersion
- separate roles for demand and productivity shocks
- Quantitative evaluation using firm-level data on prices, output, employment and wages for German manufacturing (1995-2014).

Literature

Firm dynamics and the labor market
Hopenhayn \& Rogerson 1993, Smith 1999, Cooper, Haltiwanger \& Willis 2007, Veracierto 2007, Elsby \& Michaels 2013, Fujita \& Nakajima 2013, Acemoglu \& Hawkins 2014, Kaas \& Kircher 2015

Search in product markets
Gourio \& Rudanko 2014, Kaplan \& Menzio 2014, Den Haan 2013, Michaillat \& Saez 2015, Petrosky-Nadeau \& Wasmer 2015, Huo \& Rios-Rull 2015

Price and productivity dispersion

Abbott 1992, Foster, Haltiwanger \& Syverson 2008, 2012, Smeets \& Warzynski 2013, Kugler \& Verhoogen 2012, Carlson \& Skans 2012, Carlson, Messina \& Skans 2014

Data

- Administrative Firm Data (AFiD), Panel Industriebetriebe and Module Produkte.
- All establishments in manufacturing (\& mining, quarrying) with ≥ 20 employees.
- Restriction to one-establishment firms.
- 1995-2014 (annual).
- Sales value and quantity for nine-digit products.
- Employment, working hours, wages.
- $\approx 400,000$ firm-years.

Firm dynamics

- Measure firm i's output growth:

$$
\frac{Q_{i, t+1}}{Q_{i, t}}=\frac{\sum_{j} P_{j i t} Q_{j i, t+1}}{\sum_{j} P_{j i t} Q_{j i t}}
$$

- Log sales growth is split into log output growth and log growth of the firm's Paasche price index:

$$
\widehat{S}_{i, t}=\widehat{Q}_{i, t}+\widehat{P}_{i, t}
$$

- Further consider log growth rates of employment E, hours H and hourly wage w.

Firm dynamics

	Std. dev.
\hat{S}	0.20
\hat{P}	0.18
\hat{Q}	0.26
\hat{E}	0.10
\hat{H}	0.14
\widehat{w}	0.10

	Correlation
(\hat{P}, \hat{Q})	-0.54
(\hat{Q}, \hat{E})	0.25
(\hat{Q}, \hat{H})	0.29

	Fraction $[-2 \%,+2 \%]$
\hat{P}	0.35
\hat{Q}	0.11
\hat{E}	0.25

Data statistics are averages of yearly residuals after controlling for industry and region.

Dispersion of firm growth (1996-2014)

Skewness (1996-2014)

Skewness: (P90+P10-2*P50)/(P90-P10)

Price and productivity dispersion

- Consider subsample of homogeneous goods (measured in length, area, volume, or weight). ©Examples
- \bar{P}_{j} quantity-weighted mean price of good j (in a given year).
- Firm i's relative price index:

$$
\widetilde{P}_{i}=\frac{\sum_{j} P_{j i} Q_{j i}}{\sum_{j} \bar{P}_{j} Q_{j i}}
$$

- Revenue and quantity labor productivity (per hour):

$$
R L P_{i}=\frac{\sum_{j} Q_{j i} P_{j i}}{H_{i}}, Q L P_{i}=\frac{\sum_{j} Q_{j i} \bar{P}_{j}}{H_{i}}, R L P_{i}=\widetilde{P}_{i} \cdot Q L P_{i}
$$

Wage dispersion

- Matched employer-employee data for subsample ($\approx 15 \%$) of establishments in 2001, 2006, 2010 and 2014.
- Regress hourly wages on worker observables and job characteristics: $\log w_{k i}=\beta X_{k i}+\varepsilon_{k i}$.
- Firm i's relative wage index:

$$
\widetilde{W}_{i}=\frac{\sum_{k} w_{k i} h_{k i}}{\sum_{k} e^{\beta X_{k i}} h_{k i}}
$$

Price, productivity and wage dispersion

	Std. dev.
$\log (R L P)$	0.639
$\log (Q L P)$	1.032
$\log (\tilde{P})$	0.727
$\log (\tilde{W})$	0.210

	Correlation
$\log (Q L P), \log (\tilde{P})$	-0.769
$\log (Q L P), \log (\tilde{W})$	0.282
$\log (R L P), \log (\tilde{W})$	0.422

Data statistics are averages of yearly residuals after controlling for industry and region.
Negative relation between $Q L P$ and $\tilde{P} \Rightarrow \sigma(R L P)<\sigma(Q L P)$.

The model

- General equilibrium model of firm dynamics with search frictions in product and labor markets.
- Firms build customer base B and workforce L via costly sales and recruitment activities.
- Firms react to idiosyncratic productivity (cost) shocks x and demand shocks y.
- Dispersion of wages and prices, reflecting differences in x, y (and firm age).

Response to firm-level shocks

Output
Price

Quantitative analysis

- Calibrate the model to evaluate the respective roles of productivity and demand for firm dynamics.
- Patterns of price, wage and productivity dispersion.
- Business-cycle analysis (impulse responses)

Productivity and demand shocks

- Idiosyncratic productivity and demand shocks

$$
\begin{aligned}
\log \left(x_{t+1}\right) & =\rho_{x} \log \left(x_{t}\right)+\sigma_{x} \varepsilon_{t+1}^{x}, \\
\log \left(y_{t+1}\right) & =\rho_{y} \log \left(y_{t}\right)+\sigma_{y} \varepsilon_{t+1}^{y} .
\end{aligned}
$$

- Set $\sigma_{x}=0.125, \sigma_{y}=0.130, \rho_{x}=-0.34, \rho_{y}=0.78$ to match volatility and persistence of firm-level price and output dynamics.

Firm dynamics

Productivity and demand shocks calibrated to match

	Data	Model	Only x shocks	Only y shocks
$\sigma(\hat{P})$	0.18	0.18	0.03	0.17
$\sigma(\hat{Q})$	0.26	0.27	0.24	0.10
$\hat{P} \in[-2 \%,+2 \%]$	0.35	0.36	0.47	0.72
$\hat{Q} \in[-2 \%,+2 \%]$	0.11	0.14	0.31	0.32

Data statistics are averages of yearly residuals after controlling for industry and region.

Demand shocks are important for dispersion of price growth.

Employment, hours and wages

	Data	Model	Only x shocks	Only y shocks
$\sigma(\hat{E})$	0.10	0.15	0.02	0.15
$\sigma(\hat{H})$	0.136	-	-	-
$\hat{E} \in[-2 \%,+2 \%]$	0.25	0.31	0.870	0.24
$\sigma(\widehat{W / E})$	0.09	0.08	0.01	0.07
$\sigma(\widehat{W / H})$	0.10	-	-	-
Data statistics are averages of yearly residuals after controlling for industry and region.				

Price, productivity and wage dispersion

	Data	Model	Only x shocks	Only y shocks
$\sigma(R L P)$	0.639	0.220	0.132	0.178
$\sigma(Q L P)$	1.032	0.312	0.147	0.115
$\sigma(\tilde{P})$	0.727	0.259	0.018	0.257
$\sigma(\tilde{W})$	0.210	0.077	0.015	0.073
$\rho(Q L P, \tilde{P})$	-0.769	-0.550	-0.859	-0.803
$\rho(Q L P, \tilde{W})$	0.282	-0.023	0.332	-0.315
$\rho(R L P, \tilde{W})$	0.422	0.820	0.336	0.893

Data statistics are averages of yearly residuals after controlling for industry and region.

Model accounts for $\sim 1 / 3$ of price, productivity and wage dispersion.

Model impulse responses

Aggregate shocks:

1. Mean productivity (decrease of x by 5%).
2. Mean demand (decrease of y by 5%).
3. Productivity uncertainty (increase of σ_{x} by 20%).
4. Demand uncertainty (increase of σ_{y} by 20%).

Impulse response to lower mean productivity/demand

Output
Employment

Price
Firms

Impulse response to lower mean productivity/demand

Std Price Growth

Std Quantity Growth

Std Sales Growth
Std Employment Growth

Impulse response to uncertainty shocks

Output

Price

Firms

Impulse response to uncertainty shocks

Std Price Growth

Std Sales Growth

Std Quantity Growth

Std Employment Growth

Conclusions

- Firm dynamics with product and labor market frictions: separate roles for demand \& productivity.
- Quantitative analysis: calibrate productivity and demand shocks to capture price and output dynamics.
- Implications for wage and price dispersion
- Mean productivity/demand shocks cannot account for counter-cyclical firm dispersion.
- Demand uncertainty shocks generate sizeable reactions of output and employment.

Examples of nine-digit products

- "Homogeneous" goods:
- 172032144 Fabric of synthetic fibers (with more than 85% synthetic) for curtains (measured in m^{2}).
- 211230200 Cigarette paper, not in the form of booklets, husks, or rolls less than 5 cm broad (measured in t).
- 212514130 Cigarette paper, in the form of booklets or husks (measured in kg).
- Other goods
- 174024300 Sleeping bags (measured in "items").
- 251360550 Gloves made of vulcanized rubber for housework usage (measured in "pairs").
- 297121130 Vacuum cleaner with voltage 110 V or more (measured in "items").

Wage dispersion

- Firm i's relative wage index:

$$
\widetilde{W}_{i}=\frac{\sum_{k} w_{k i} h_{k i}}{\sum_{k} e^{\beta X_{k i} h_{k i}}}
$$

- Decomposition of log hourly wage:

$$
\log \left(w_{i}\right)=\log \left(\widetilde{W}_{i}\right)+\log (\underbrace{\frac{\sum_{k} e^{\beta X_{k i}} h_{k i}}{\sum_{k} h_{k i}}}_{=\bar{w}_{i}}) .
$$

- Variance decomposition:

$$
\underbrace{8.6 \%}_{\operatorname{var}(\log (w))}=\underbrace{3.2 \%}_{\operatorname{var}(\log (\bar{w}))}+\underbrace{4.4 \%}_{\operatorname{var}(\log (\tilde{W}))}+\underbrace{1.0 \%}_{2 \cdot \operatorname{covar}(\log (\bar{w}), \log (\tilde{W}))}
$$

The Model

- Canonical model of firm dynamics with trading frictions in product and labor markets.
- Representative household with
- \bar{L} worker members, each supplying one unit of labor per period.
- Endogenous measure of shopper members (cost c), each buying up to one unit of a good per period.
- Preferences

$$
\sum_{t \geq 0} \beta^{t}\left[e_{t}+u\left(\int y_{t}(f) C_{t}(f) d \mu_{t}(f)\right)\right]
$$

e_{t} consumption of a numeraire good, $y_{t}(f)$ firm-specific demand state,
$C_{t}(f)$ consumption of firm f 's output, $\mu_{t}($.$) measure of active firms in period t$.

Firms

- Consider a firm with L workers and B customers.
- Output $x F(L)$ with $F^{\prime}>0, F^{\prime \prime}<0 . x$ is firm-specific productivity.
- The firm sells $\min (B, x F(L))$ units of output.
- $z=(x, y)$ follows a Markov process.
- Recruitment and sales costs $r(R, L)$ and $s(S, L)$.
- Costs are increasing \& convex in effort R, S and possibly declining in size L (scale effects).

Search and matching

- Firms offer long-term wage contracts to new hires and price discounts to new customers.
- Directed search: Matching rates vary across firms.
- Firm hires $m(\lambda) R$ where λ are unemployed workers per unit of recruitment effort ($m^{\prime}>0, m^{\prime \prime}<0$).
- Firm attracts $q(\varphi) S$ new customers where φ are unmatched shoppers per unit of sales effort ($q^{\prime}>0, q^{\prime \prime}<0$).
- Matching rate for workers: $m(\lambda) / \lambda$.
- Matching rate for shoppers: $q(\varphi) / \varphi$.

Separations, entry and exit

- New firms enter at cost K, draw initial state $\left(x_{0}, y_{0}\right)$, $\left(L_{0}, B_{0}\right)=(0,0)$.
- Firms exit with probability δ.
- Exogenous quit rates $\bar{\delta}_{w}$ and $\bar{\delta}_{b}$.
- Firms choose customer and worker separation rates $\delta_{b} \geq \bar{\delta}_{b}$, $\delta_{w} \geq \bar{\delta}_{w}$.

Stationary competitive search equilibrium

Value functions for workers U, W, shoppers V, Q, firms J, firm policies $\lambda, R, \varphi, S, \delta_{b}, \mathcal{C}^{a}=\left(w^{a}(),. \delta_{w}^{a}().\right),\left(L^{\tau}\right)_{\tau=0}^{a}, L, B, p, p^{R}$, entrant firms N_{0}, aggregate consumption C, and workers' search value ρ^{*} such that
(a) Workers search optimally.
(b) Shoppers search optimally.
(c) Firms' value functions J and policy functions solve the recursive firm problem. more
(d) Free entry:

$$
K=\sum_{z_{0}} \pi^{0}\left(z_{0}\right) J\left(0, z_{0}\right)
$$

(e) Aggregate resource feasibility:

$$
\bar{L}=\sum_{z^{a}} N\left(z^{a}\right)\left\{L\left(z^{a}\right)+\left[\lambda\left(z^{a}\right)-m\left(\lambda\left(z^{a}\right)\right)\right] R\left(z^{a}\right)\right\} .
$$

Social optimality

Recursive planning problem: Maximize the social firm value

$$
\begin{aligned}
& G\left(L_{-}, B_{-}, x, y\right)=\max \left\{u^{\prime}(C) y B-b L-r\left(R, L_{-}\left(1-\delta_{w}\right)\right)-s\left(S, L_{-}\left(1-\delta_{w}\right)\right)\right. \\
& \left.-\rho[L+(\lambda-m(\lambda)) R]-c[B+(\varphi-q(\varphi)) S]+\beta(1-\delta) \mathbb{E}_{x, y} G\left(L, B, x_{+}, y_{+}\right)\right\},
\end{aligned}
$$

subject to

$$
\begin{aligned}
L & =L_{-}\left(1-\delta_{w}\right)+m(\lambda) R, \\
B & =B_{-}\left(1-\delta_{b}\right)+q(\varphi) S, \\
B & \leq x F(L), \delta_{w} \geq \bar{\delta}_{w}, \delta_{b} \geq \bar{\delta}_{b} .
\end{aligned}
$$

Firm policies

- Recruitment expenditures and job-filling rates are positively related. If $R>0$,

$$
r_{1}^{\prime}(.)=\rho\left[\frac{m(\lambda)}{m^{\prime}(\lambda)}-\lambda\right]
$$

- Sales expenditures and customer acquisition rates are positively related. If $S>0$,

$$
s_{1}^{\prime}(.)=c\left[\frac{q(\varphi)}{q^{\prime}(\varphi)}-\varphi\right]
$$

- Faster growing firms offer higher salaries to workers and greater discounts to customers.

Prices and revenue

- Discount price $p=u^{\prime}(C) y-\frac{c \varphi}{q(\varphi)}$ falls in φ (and S).
- Reservation price $p^{R}=u^{\prime}(C) y-c$.
- Younger firms charge lower prices to build a customer base.
- Revenue

$$
p^{R} B_{-}\left(1-\delta_{b}\right)+p q(\varphi) S
$$

Calibration

- Functional forms:

$$
\begin{aligned}
F(L)=L^{\alpha}, r\left(R, L_{0}\right) & =\frac{r_{0}}{1+\nu}\left(\frac{R}{L_{0}}\right)^{\nu} R, s\left(S, L_{0}\right)=\frac{s_{0}}{1+\sigma}\left(\frac{S}{L_{0}}\right)^{\sigma} S \\
m(\lambda) & =m_{0} \lambda^{\mu}, q(\varphi)=q_{0} \varphi^{\gamma} .
\end{aligned}
$$

- Parameters

$$
\begin{gathered}
\alpha=0.7, \nu=\sigma=2, \mu=\gamma=0.5 \\
\bar{\delta}_{w}=0.02, \bar{\delta}_{b}=0.43, \delta=0.02, \beta=0.96
\end{gathered}
$$

- m_{0}, q_{0} such that matching rates for workers (shoppers) are 0.45 (0.5).
- Expenditures for recruitment (sales) are 1\% (2\%) of output.

Impulse response to lower mean productivity/demand

Impulse response to uncertainty shocks

