

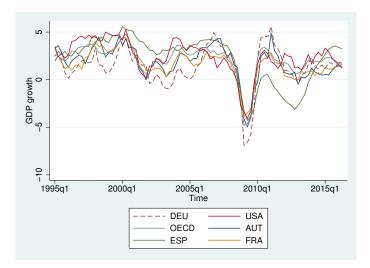
The Employment and Output Effects of Short-Time Work in Germany

Russell Cooper¹ Moritz Meyer ² Immo Schott ³

¹Penn. State ²The World Bank ³Université de Montréal

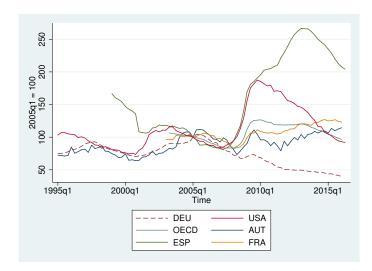
AFiD-Nutzerkonferenz March 30th, 2017

(日)



- 2008 recession in Germany entailed:
 - Large negative effect on GDP & total hours worked

▲ロト ▲冊ト ▲ヨト ▲ヨト - ヨー の々ぐ


- Small effect on unemployment
- Stark contrast with other OECD economies
- 'German Labor Market Miracle'
- One Leading Explanation: Short-Time Work (STW)
- Our question:
 - Can STW save jobs?
 - And if yes, at what cost?

Introduction The Model Steady State Aggregate Shocks Employment Conclusion Appendix GDP Growth (year-to-year)

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = つへぐ

Introduction The Model Steady State Aggregate Shocks Employment Conclusion Appendix Unemployment Rate

• Labor market policy instrument

- Goal: Mitigating cyclical shocks
- Change labor demand via intensive margin (hours vs. workers)
- UI compensates workers for lost income (60-67%)
- Absent STW, unilateral reductions in hours worked are illegal
- Use of STW is subject to strict set of legal requirements Details
- The 'STW policy': 2009 2010
 - Gov't dramatically reduced eligibility criteria & burden of proof

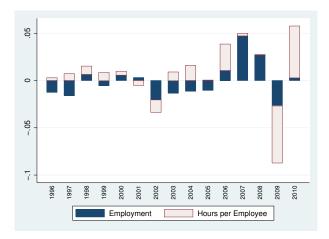
- Maximum duration increased from six to 18, and then 24 months
- June 2009: Around 60,000 establishments and 1,500,000 workers Graph

- Can STW save jobs?
 - Economic press, Government, Unions
 - $\bullet \ \rightarrow$ We find a positive effect on employment
- What are the costs?
 - Reduced form vs. structural model
 - 'Reallocation channel'
 - $\bullet \ \rightarrow$ STW prevents reallocation of labor

▲ロト ▲冊ト ▲ヨト ▲ヨト - ヨー の々ぐ

 $\bullet \ \rightarrow \ {\rm adverse} \ {\rm effect} \ {\rm on} \ {\rm GDP}$

- Work Sharing: Burdett & Wright (1989), Hunt (1998, 1999), Marimon & Zilibotti (2000), Kudoh & Sasaki (2011)
- German Labor Market: Krause & Uhlig (2011), Burda & Hunt (2011), Cahuc & Carcillo (2011), Balleer et al. (2016)
- Factor allocation: Hsieh & Klenow (2007), Bartelsman et. al (2013)
- Multi-worker firms: Cooper, Haltiwanger, & Willis (2007), Elsby & Michaels (2013), Stole & Zwiebel (1996)

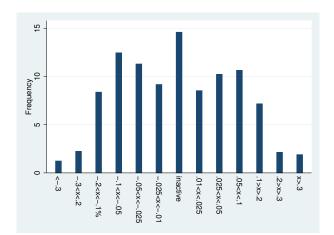


- Afid-Panel Indusriebetriebe from German Statistical Office
- Universe of manufacturing plants, annual panel 1995-2010
- Up to 68,000 observations, use pprox 39,000
- Variables: Revenue, Employment, Hours Worked, ... Sumstats
- Advantages
 - June 2009: 80.4% (41%) of workers (firms) using STW were located in manufacturing

- Heavy concentrating of employment in Mittelstand
- No sampling bias
- Disadvantages
 - No direct information on STW

Introduction The Model Steady State Aggregate Shocks Employment Conclusion Ap

Changes in Total Hours: Extensive and Intensive Margins

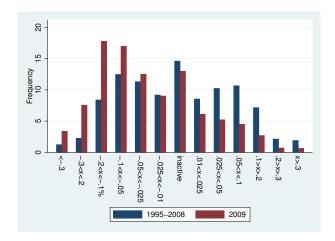

▲□▶ ▲圖▶ ▲注▶ ▲注▶ - 注: のへで

Distribution of changes in annual hours per worker: 1995-2008

Aggregate Shocks

Introduction

The Model


Appendix

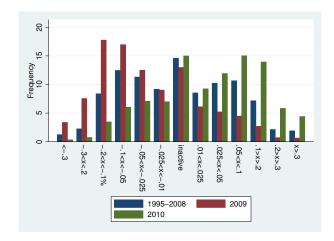
Distribution of changes in annual hours per worker: 1995-2009

Aggregate Shocks

Introduction

The Model

◆□▶ ◆圖▶ ◆注▶ ◆注▶ 590 E


Appendix

Distribution of changes in annual hours per worker: 1995-2010

Aggregate Shocks

Introduction

The Model

▲□▶ ▲□▶ ▲臣▶ ★臣▶ 三臣 - のへで

Appendix

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ - □ - のへぐ

- Basic Model
- Hours Contraints & STW
- Aggregate Shocks
- Quantitative Results: Counterfactuals

▲ロト ▲冊 ト ▲ ヨ ト ▲ ヨ ト ● の へ ()

- Workers and multi-worker Firms
- Firms face idiosyncratic productivity shocks ε
- Decreasing returns to scale in production
- Total labor input $L = h \cdot n$
- Frictional labor market produces rents
 - Nash-Bargaining
 - Matching Function M = m(U, V), CRS
 - Labor Market Tightness $\theta = \frac{V}{U}$
 - Vacancy-filling probability $q = \frac{M}{V}$
- Distribution of firms over (ε, n)

• Firm enters period with n_{-1} workers and productivity ε

(日)

- Choose *n* workers and average hours *h*
- Negotiate wage with *n* workers
- Produce output

Introduction The Model Steady State Aggregate Shocks Employment Conclusion Appendix Model - Firm's Problem

$$V(\varepsilon, n_{-1}) = \max_{h,n} \bigg\{ \varepsilon F(h \cdot n) - \omega(h, n, \varepsilon) \cdot h \cdot n - \frac{c_v}{q} (n - n_{-1}) \mathbb{1}^+ + \beta \int V(\varepsilon', n) dG(\varepsilon'|\varepsilon) \bigg\},$$

- $\omega(\cdot)$ is a wage schedule
- c_v is a linear vacancy creation cost
- 1^+ is an indicator for when a firm is hiring
- q is the vacancy filling rate, determined in equilibrium

(日)

Introduction The Model Steady State Aggregate Shocks Employment Conclusion Appendix Model - Firm's Problem

• FOC Hours

$$\varepsilon F_L(h \cdot n) - \omega(h, n, \varepsilon) - \omega_h(h, n, \varepsilon) \cdot h = 0$$

▲□▶ ▲□▶ ▲ 臣▶ ★ 臣▶ 三臣 - のへぐ

Introduction The Model Steady State Aggregate Shocks Employment Conclusion Appendix Model - Firm's Problem

• FOC Hours

$$\varepsilon F_L(h \cdot n) - \omega(h, n, \varepsilon) - \omega_h(h, n, \varepsilon) \cdot h = 0$$

• FOC Employment (if $\Delta n \neq 0$)

$$\varepsilon hF_{L}(h \cdot n) - \omega(h, n, \varepsilon) \cdot h - \omega_{n}(h, n, \varepsilon) \cdot nh - \frac{c_{v}}{q} \mathbb{1}^{+} + \beta D(\varepsilon, n) = 0,$$

▲□▶ ▲□▶ ▲ 臣▶ ★ 臣▶ 三臣 - のへぐ

• where $D(\varepsilon, n) \equiv \int V_n(\varepsilon', n) dG(\varepsilon'|\varepsilon)$

The Model Steady State Aggregate Shocks Employment Appendix Model - Worker's Problem

$$W^{e}(\varepsilon, n) = \omega(h, \varepsilon, n) \cdot h - \xi(h) + \beta \mathbb{E}_{\varepsilon'|\varepsilon} \left[sW^{u} + (1 - s)W^{e}(\varepsilon', n') \right].$$

$$W^{u} = b + \beta \mathbb{E}_{(\varepsilon',n')} \left[(1-\phi)W^{u} + \phi W^{e}(\varepsilon',n') \right].$$

• value of employment conditional on the state of a firm: used for negotiation

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 - のへで

• s endogenous separation rate

- Workers and Firm share surplus of match
 - $\bullet\,$ Decreasing return to scale \rightarrow surplus changes for each worker
 - Nash bargaining over *marginal* surplus (Stole & Zwiebel (1996))
- Firm's marginal surplus for matching with a worker:

$$S(\varepsilon, n) = \varepsilon h F_L(h \cdot n) - \omega(h, n, \varepsilon) h - \omega_n(h, n, \varepsilon) h n + \beta D(\varepsilon, n)$$

• Surplus is shared according to

$$W^{e}(\varepsilon, n) - W^{u} = \frac{\eta}{1-\eta}S(\varepsilon, n).$$

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

• Appendix B: Wage solves differential equation

$$\omega(h,\varepsilon,n)\cdot h = (1-\eta)\left[b+\xi(h)\right] + \eta\left[\varepsilon hF_L(h\cdot n) + \phi\frac{c_v}{q} - \omega_n(h,n,\varepsilon)\cdot h\cdot n\right]$$

• Assume
$$F(L) = L^{\alpha} = (n \cdot h)^{\alpha}$$

$$\omega(h,\varepsilon,n)\cdot h = (1-\eta)\left[b+\xi(h)\right] + \eta\left[\frac{\varepsilon\alpha h^{\alpha}n^{\alpha-1}}{1-\eta(1-\alpha)} + \phi\frac{c_{\nu}}{q}\right]$$

- Alternative Interpretation of Bargain:
 - Negotiated at t = 0
 - Covers many workers/firm pairs

Introduction The Model Steady State Aggregate Shocks Employment Conclusion Appendix Model - Optimal Labor Demand

- Combine wage with FOCs to get $\mathcal{H}(\varepsilon, n)$ and $\mathcal{N}(\varepsilon, n_{-1})$.
- The optimal hours choice:

$$\mathcal{H}(\varepsilon, n) = \left[\frac{\varepsilon \alpha n^{\alpha-1}}{\xi'(h) \left(1 - \eta(1 - \alpha)\right)}\right]^{\frac{1}{1 - \alpha}}$$

• The optimal employment choice:

$$\mathcal{N}(\varepsilon, n_{-1}) = \begin{cases} \psi_{\nu}^{-1}(\varepsilon) & \text{if } \varepsilon > \psi_{\nu}(n_{-1}), \\ n_{-1} & \text{if } \varepsilon \in [\psi(n_{-1}), \psi_{\nu}(n_{-1})], \\ \psi^{-1}(\varepsilon) & \text{if } \varepsilon < \psi(n_{-1}), \end{cases}$$

 Graph

Introduction

The Model Steady State

tate Ag

n Appen

Introducing Hours Constraint and STW

- Standard hours = \underline{h} . Generally, firm cannot set $h < \underline{h}$
- STW
 - $\bullet \ \Xi \in [0,\underline{h}]$
 - Constraint changes to $\underline{h}-\Xi$
 - Workers compensated for income loss
 - STW use has to be approved by gov't
- The optimal hours policy function becomes

$$\mathcal{H}(\varepsilon, n) = \max\left\{\underline{h} - \Xi, \left[\frac{\varepsilon \alpha n^{\alpha - 1}}{\xi'(h) \left(1 - \eta(1 - \alpha)\right)}\right]^{\frac{1}{1 - \alpha}}\right\}.$$

- extensive margin
 - impacts firm demand for workers
 - equilibrium effect on vacancy filing rate
- NO effects on wage function

Introduction

The Model Steady

Steady State Ag

Aggregate Shocks

Employment

Conclusion

▲□▶ ▲□▶ ▲ 臣▶ ★ 臣▶ 三臣 - のへぐ

Appendix

Model - Calibration $(\Xi = 0)$

Parameter	Meaning	Value	Reason
β	Discount factor	.9967	Annual <i>r</i> = 4%
γ	Matching elasticity	.6	Petrongolo & Pissarides (2001)
μ	Matching efficiency	.1622	heta=0.091
α	$F(L) = L^{\alpha}$.65	Cooper et al. (2007)
Ē	Mean of ε	1	Normalization
Ь	Unemployment benefit	.024	Average employment $=$ 98.5
ξ_0	Disutility of work (scale)	.124	Average hours $= 1$
η	Worker bargaining power	.413	Labor share 0.76

Table: Calibrated Parameters

The Model

Steady State Aggregate Shocks

Employment

▲□▶ ▲□▶ ▲ 臣▶ ★ 臣▶ 三臣 - のへぐ

Appendix

Model - Estimation ($\Xi = 0$)

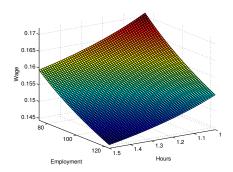
Moment	Data	Model
$\frac{L-N}{L} = \frac{\delta}{\phi+\delta}$.09	.09
$\Delta h < 5\% $ (annual)	.538	.542
$\Delta n < 5\% $ (annual)	.476	.440
cv(n)/cv(h)	5.63	5.66
Distance $L(\Theta)$	-	0.001382

Table: Moments for Estimation

Introduction T	he Model	Steady State	Aggregate Shocks	Employment	Conclusion	Appendix

Parameter	Meaning	Value	
ξ_1	Disutility of work	4.42	
C_V	Vacancy cost	.065	
ρ_{ε}	Persistence of $arepsilon$.983	
$\sigma_{arepsilon}$	Std. dev. of $arepsilon$.037	

Table: Estimated Parameters



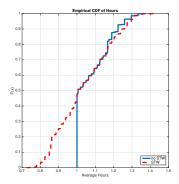
- Match inactivity regions of Hours and Employment changes
- Match the relative variability of hours and employment
- Value of leisure = 13.24% of average wages
- Firms spend on average 1.07% of monthly wage bill on recruiting costs

- Labor market tightness $\theta = \frac{V}{U} = 0.091$
- Monthly job-finding rate of 6.22%
 - US \approx 30% (Hall (2006))

Introduction The Model Steady State Aggregate Shocks Employment Conclusion Appendix

Steady state results - Hourly wage

- Wage is decreasing in *n* and *h*
 - Effect via marginal product of labor & disutility
- More productive firms are large
 - Positive relationship between size and wages


A D > A D > A D > A D >

3

Sac

Introduction The Model Steady State Aggregate Shocks Employment Conclusion Appendix

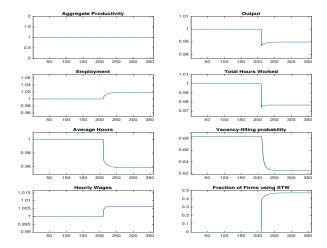
Steady state results - The Hours Constraint $\underline{h} = 1$

- Constraint can be binding in steady state
- \underline{h} prevents hours reductions, firms use extensive margin

(日)

$$\begin{array}{c} & \mathcal{A}^{\mathrm{high}} & \mathcal{A}^{\mathrm{low}} & \mathcal{A}^{\Xi} \\ \Pi = & \mathcal{A}^{\mathrm{low}} \\ & \mathcal{A}^{\Xi} \end{array} \begin{bmatrix} \rho & 1-\rho & 0 \\ 1-\rho & \rho & 0 \\ 1-\rho & \rho-\pi & \pi \end{bmatrix}$$

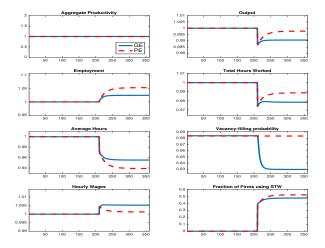
- Average duration of STW is six months: π
- Solve similarly to Krusell & Smith (1998)
 - Firms need to forecast q' which depends on the cross-sectional distribution


• summarized by inclusion of lagged q

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ - □ - のへぐ

- Simulation of economy
- Let STW policy become active in period t = 200
- no negative productivity shocks

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ - □ - のへぐ



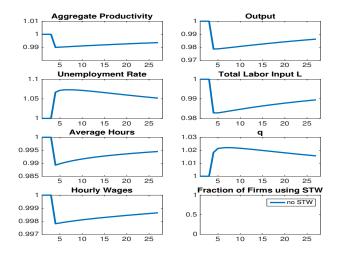
▲ロト ▲冊ト ▲ヨト ▲ヨト ヨー のくで

- Simulation of economy
- Let STW policy become active in period t = 200
- no negative productivity shocks
- Partial Equilibrium: Keep q fixed

Appendix

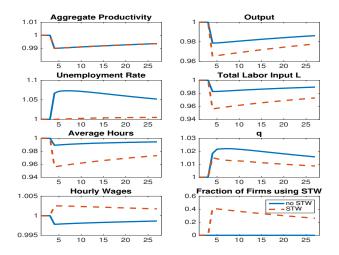
IRF - Effect of STW - PE

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ - □ - のへぐ

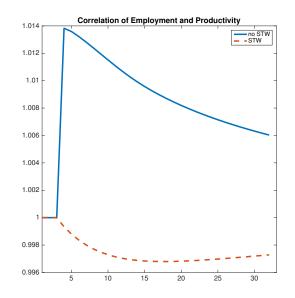

- STW increases employment but has a negative effect on output.
- Key: endogeneity of q
- Positive employment response more than twice as large in PE

▲ロト ▲冊ト ▲ヨト ▲ヨト ヨー のくで

- Output falls by almost 1%
- Heterogeneous effect on firms


Introduction The Model Steady State Aggregate Shocks Employment Conclusion Appendix

IRF - Recession without STW


◆ロト ◆掃 ト ◆ 臣 ト ◆ 臣 ト ○ 臣 … の へ ()・

IRF - Recession with STW

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

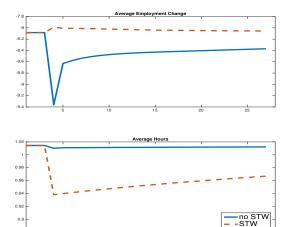
Introduction The Model Steady State Aggregate Shocks Employment Conclusion Appendix Productivity Effects

▲ 差 ▶ 差 り へ (~)

Introduction

The Model Steady State

0.88


te Aggreg

Aggregate Shocks

Employment

onclusion Appendix

Employment Effects for firms with $\Delta \varepsilon < 0$

20

25

10

◆ロト ◆昼 ト ◆臣 ト ◆臣 - のへで

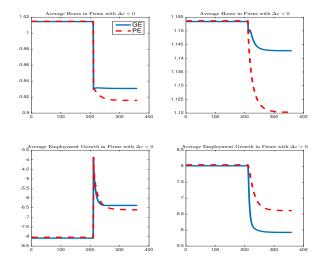
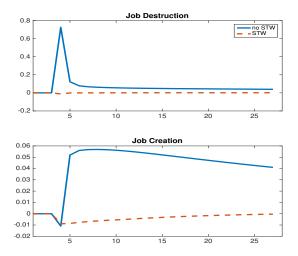



Figure: Average Hours and Employment Change by $\Delta \varepsilon$.

Job Creation and Job Destruction

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

- Role of parameters (see paper)
- Role of labor market institutions
 - $\bullet \ \ {\sf Flexibility}, \ \underline{h} < 1$
- Alternative: Hiring Credits
 - cheaper, but less effective
 - Large initial effect on U via JD

- Germany 2009:
 - labor productivity per worker -4.9%
 - labor productivity per hour -2.2%
 - Less job creation in sectors with more STW Graph

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

• in line with model prediction

- Can STW save jobs?
 - Economic press, Government, Unions
 - $\bullet \ \rightarrow$ We find a positive effect on employment
- What are the costs?
 - Reduced form vs. structural model
 - 'Reallocation channel'
 - $\bullet \ \rightarrow STW$ prevents reallocation of labor
 - $\bullet~\rightarrow$ negative effect on GDP of around 1%

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

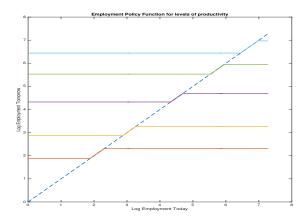
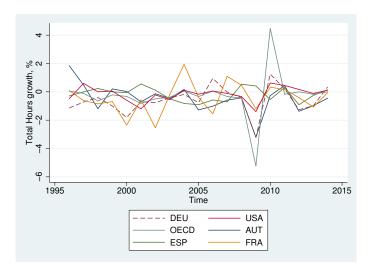



Figure: Firm's Employment Policy $\mathcal{N}(\varepsilon, n_{-1})$ as a function of productivity.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Change in Total Hours Worked

Introduction	The Model	Steady State	Aggregate Shocks	Employment	Conclusion	Appendix
Summa	ry Statis	stics				

	Count	Mean	SD	IQR	p10	p50	p90
N	38,839	98.5	142.6	73.8	19.4	48.2	228.0
Н	33,617	156,300	20,576	11,694	3,578	8,366	35,107
H/N	34,303	135.8	35.7	31.6	104.5	134.0	167.9
PY	39,180	1,531,785	3,106,538	1,116,285	101,242	474,343	3,766,944

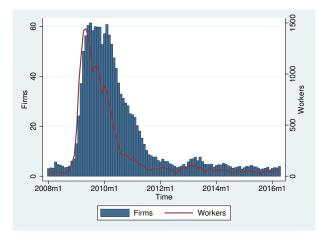
Table: Summary Statistics

Note: Summary statistics for Employment *N*, Hours *H*, Hours per Employee H/N, and Revenues *PY*. The table shows average values over all years. Revenues are deflated to 2005 Euros.

▲□▶ ▲□▶ ▲ 臣▶ ★ 臣▶ 三臣 - のへぐ

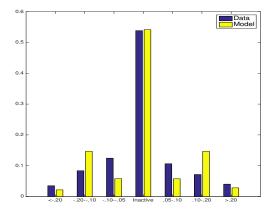
back

- In Hours reduction must not be preventable (overtime, holidays)
- The firm must be unable to compensate the work stoppage with permissible variations in intra-firm working hours
- At least a third of the firm's workforce must suffer an earnings loss of at least 10%.
- Reduction in working time must be *temporary*. The maximum duration of STW is six months. After this time full-time employment should be restored.
 - Hours worked will be paid as usual
 - Remanence costs for the firm
 - The gov't will compensate workers for 60% (67%) of earnings loss


usion A

▲口 ▶ ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ― 臣 …

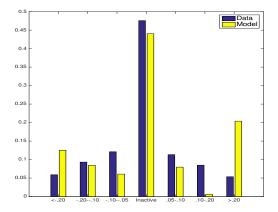
Appendix


990

STW use by Workers and Firms

back

Hours Change Distribution


イロト イロト イヨト イヨト

æ

990

back

Employment Change Distribution

・ロト ・ 聞 ト ・ ヨ ト ・ ヨ ト

æ

990

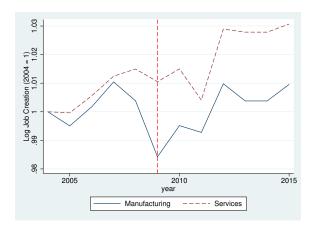


Figure: Job Creation, in logs, normalized to 2004 values. Source: German Employment Agency.

(日)、

990