FAKULTÄT FÜR SOZIALWISSENSCHAFTEN Lehrstuhl für Statistik und sozialwissenschaftliche Methodenlehre Prof. Dr. Josef Brüderl

Longitudinal Data Analysis

RatSWD Nachwuchsworkshop Vorlesung von Josef Brüderl 25. August, 2009

Longitudinal Data Analysis

- Traditional definition
 - Statistical methods for analyzing data with a time dimension
 - Trend data, event history data, panel data
- Modern definition (Cameron/Trivedi, Microeconometrics)
 - Cross-sectional analysis: inference from between-subject comparison
 - Longitudinal analysis: inference from within-subject comparison
- According to the modern definition
 - are trend data always cross-sectional
 - is traditional event-history analysis also cross-sectional
 - only panel data (repeated observation of the same persons) allow for longitudinal analysis

Panel Data

i	t	у	х
1	1	У ₁₁	×11
1	2	У ₁₂	×12
2	1	y_{21}	x ₂₁
2	2	У ₂₂	x 22
÷			
Ν	1	y _{N1}	$x_{\rm N1}$
Ν	2	У _{N2}	x _{N2}

- Repeated measures of one or more variables on one or more persons
- Macroeconomics, Political Science
 - Unit of analysis: countries
 - N small, T large
 - Repeated cross-sectional time-series
- Microeconomics, Sociology
 - Unit of analysis: persons
 - N large, T small
 - Mostly from panel surveys
 - Also from cross-sectional surveys by retrospective questions

Advantages of Panel Data

- Panel data allow for higher precision
 - Due to the higher number of cases (pooling data, N•T)
 - However, in this respect trend data would be even better
- Panel data allow to study individual dynamics
 - Transitions into and out of states (e.g. poverty)
 - Individual growth curves (e.g. wage, materialism, intelligence)
 - Cohort or age effect?
 - Procedure: including age/cohort dummies
- They provide information on the time-ordering of events
 - Causal inference gains strength
 - Procedure: careful data preparation (lags)
- They allow for unobserved heterogeneity
 - Procedure: special statistical models (the rest of this lecture)

Panel Data and Causal Inference I

Counterfactual approach to causality (Rubin's model)

$$Y_{i,t_0}^T - Y_{i,t_0}^C$$

With cross-sectional data (between estimation)

$$Y_{i,t_0}^T - Y_{j,t_0}^C$$

- Assumption of unit homogeneity (no unobserved heterogeneity)
- Assumption of conditional independence (no reverse causality)
- With panel data I (within estimation)

$$Y_{i,t_1}^T - Y_{i,t_0}^C$$

- Problem: period effects, maturation
- With panel data II (difference-in-differences estimator, DID) $(Y_{i,t_1}^T - Y_{i,t_0}^C) - (Y_{i,t_1}^C - Y_{i,t_0}^C)$

Panel Data and Causal Inference II

The two major problems in Social Research	Solution with experimental design	Solution with panel design
Self-selection (leading to unobserved heterogeneity)	Randomization	Within estimation (before-after comparison)
Reverse Causality (treatment depends on Y)	Controlled treatment	No simple solution (e.g. no time-varying unobserved heterog.)

 With panel data we can tackle one of the two major problems of Social Research

Panel Data and Causal Inference III

- No self-selection
 - Bivariate analysis suffices
- Self-selection only on observables
 - Cross-sectional regression provides unbiased estimates
 - Even better: Cross-sectional propensity-score matching
- Self-selection also on unobservables
 - Cross-sectional IV-estimation provides unbiased estimates under very strong assumptions
 - Panel regression (fixed-effects regression) provides unbiased estimates under much weaker assumptions

Example: Marriage-Premium for Men?

Fabricated data ("Wage Premium.dta"): long-format

. list id time wage marr, separator(6)										
	 id	time	wage	 marr		. – 	id	time	wage	marr
1		 1	1000		13	-	 २	 1	2900	0
2.	1	2	1050	0	14.	1	3	2	3000	0
3.	, 1	3	950	0	15.	Ì	3	3	3100	0
4.	1	4	1000	0	16.		3	4	3500	1
5.	1	5	1100	0	17.		3	5	3450	1
6.	1	6	900	0	18.		3	6	3550	1
						-				
7.	2	1	2000	0	19.		4	1	3950	0
8.	2	2	1950	0	20.		4	2	4050	0
9.	2	3	2050	0	21.		4	3	4000	0
10.	2	4	2000	0	22.		4	4	4500	1
11.	2	5	1950	0	23.		4	5	4600	1
12.	2	6	2050	0	24.		4	6	4400	1
						-				

Example: Marriage-Premium for Men?

Example: Computing the Marriage-Premium

- These data are like experimental data
 - Treatment and control group
 - Before-after comparison
- Compute the DID-estimator

 $\frac{(4500 - 4000) + (3500 - 3000)}{2} - \frac{(2000 - 2000) + (1000 - 1000)}{2} = 500$

- The marriage-premium is 500 €
- Within-person comparison (the before-after difference)
- To rule out the possibility of maturation or period effects we compare the within-difference of married (treatment) and unmarried (control) men

The Fundamental Problem of Non-Experimental Research

- Result of a cross-sectional regression at T=4: $y_{i4} = \beta_0 + \beta_1 x_{i4} + u_{i4}$
 - Between-comparison: compare wages of married and unmarried men

$$\hat{\beta}_1 = \frac{4500 + 3500}{2} - \frac{2000 + 1000}{2} = 2500$$

- A cross-sectional regression is highly misleading!
 - The bias is due to unobserved heterogeneity
 - High-wage men self-select into marriage
 - Technically: endogeneity (x_{i4} and u_{i4} are correlated)
- Self-selection is the fundamental problem of non-experimental research
 - Most cross-sectional regression results are therefore highly disputable!

No Solution: Pooled-OLS

Pool the data and estimate an OLS regression (POLS)

$$y_{it} = \beta_0 + \beta_1 x_{it} + u_{it}$$

- The result is $\hat{\beta}_1 = 1833$
 - This is the mean of the red points minus the mean of the green points
 - The bias is still heavy
 - POLS also relies on a between comparison. It is thus biased due to unobserved heterogeneity: x_{it} and u_{it} are correlated
- Panel data per se do not remedy the problem of unobserved heterogeneity!
 - One has to use appropriate methods of analysis

A Solution: Panel Data and Within-Estimation

- One has to construct a regression model that relies on the before-after comparison (like DID)
- Starting point: error-components model
 - Person-specific error v_i , idiosyncratic error ϵ_{it}

$$u_{it} = v_i + \mathcal{E}_{it}$$

Error-components model

$$y_{it} = \beta_1 x_{it} + \nu_i + \varepsilon_{it}$$

- v_i represents person-specific time-constant unobserved heterogeneity (fixed-effects) (in our example v_i could be unobserved ability)
- Pooled-OLS has to assume that x_{it} is uncorrelated with both error-components

Fixed-Effects Regression

- How can we get rid of the fixed-effects?
- Within transformation
 - "Time-demeaning" the data

$$y_{it} = \beta_1 x_{it} + \nu_i + \varepsilon_{it} \quad (1)$$

Average over t for each i

$$\overline{y}_i = \beta_1 \overline{x}_i + \nu_i + \overline{\varepsilon}_i \quad (2)$$

Substract (2) from (1)

$$y_{it} - \overline{y}_i = \beta_1 (x_{it} - \overline{x}_i) + \varepsilon_{it} - \overline{\varepsilon}_i \quad (3)$$

- Only within variation is left
- Pooled OLS (FE-estimator) unbiased, if $Cov(x_{it}, \epsilon_{it}) = 0$
- However, Cov(x_{it},v_i) ≠ 0 is allowed
 Time-constant unobserved heterogeneity is no longer a problem

Example: Fixed-Effects Regression

. xtreg wage marr, fe						
Fixed-effects (within) regression Group variable: id				Number of Number of	obs = groups =	24 4
R-sq: within = 0.8982 between = 0.8351 overall = 0.4065				Obs per group: min = 6 avg = 6.0 max = 6		
corr(u_i, Xb)	= 0.5164			F(1,19) Prob > F	=	167.65 0.0000
wage	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
marr cons	500 2500	38.61642 16.7214	12.95 149.51	0.000 0.000	419.1749 2465.002	580.8251 2534.998
sigma_u sigma_e rho	1290.9944 66.885605 .99732298	(fraction	of varian	ce due to	u_i)	

"Mechanics" of a FE-Regression

- Those, never marrying are at X=0. They contribute nothing to the regression.
- The slope is determined by the wages of those marrying only: It is the difference in the mean wage before and after marriage.

Summary of FE-Estimation

- Panel data and within estimation (DID, FE-regression) can remedy the problem of unobserved heterogeneity
- However, with FE-regressions we cannot estimate the effects of time-constant covariates. These are all cancelled out by the within transformation.
- This reflects the fact that panel data do not help to identify the causal effect of a time-constant covariate!
- The "within logic" applies only with time-varying covariates
 - Something has to "happen" (the effects of events)
 - Only then a before-after comparison is possible

An Example: Male Marital Wage Premium

- Mikrozensus Panel 1996-1999 (Campus-File)
- Analysesample
 - Balanced Sample: nur Personen mit 4 Beobachtungen (bis auf MV)
 - Männer, die 1996 18-40 Jahre alt sind und 1996 ledig sind
- Abhängige Variable
 - Natürlicher Logarithmus des Netto-Monatslohnes (Intervallmitte imputiert)
- Unabhängige Variable
 - Heirats-Dummy (Verheiratet)
- Kontrollvariablen
 - Alterseffekt: Alter und Alter²
 - Periodeneffekt: Jahres-Dummies
- Panel-robuste Standardfehler

An Example: Male Marital Wage Premium

	POLS	RE-Modell	FE-Modell
Verheiratet	0.19***	0.06	0.00
Alter	0.30***	0.30***	0.31***
Alter ² / 100	-0.42***	-0.43***	-0.42***
Personen	712	712	712
Personenjahre	2636	2636	2636
R ²	0.28	0.11	0.11

Further Readings

- Lecture Notes by Josef Brüderl on Panel and EH Analysis
 - http://www.sowi.uni-mannheim.de/lessm/lehre.html
- Textbooks
 - Wooldridge, J. (2003) Introductory Econometrics. Thomson.
 - Cameron, A.C. and P.K. Trivedi (2005) Microeconometrics.
- Panel Data Analysis
 - Allison, P.D. (2005) Fixed Effects Regression Methods for Longitudinal Data Using SAS. SAS Press.
 - Allison, P.D. (1994) Using Panel Data to Estimate the Effects of Events. Sociological Methods & Research 23: 174-199.
 - Halaby, C. (2004) Panel Models in Sociological Research. Annual Rev. of Sociology 30: 507-544.
- EHA with repeated events
 - Allison, P.D. (1996) Fixed-Effects Partial Likelihood for Repeated Events. Sociological Methods & Research 25: 207-222.